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SYNTHESIS OF THE RIFAMYCIN CHROMOPHORE 

T. Ross Kelly,* Mohammad Behforouz, Antonio Echavarren and Jacob Vaya 
Department of Chemistry, Boston College, Chestnut Hill, MA 02167 

Summary: A regiospecific, Diels-Alder based synthesis of the naphthofuranone chromophore (1) 
of the rifamycins is described. 

The family of macrolides known as the rifamycins (e.g. L),l has attracted considerable 

synthetic interest recently. Most effort has focused on addressing the stereochemical problems 

embodied in the ansa bridge. 
2 

Construction of the naphthofuranone chromophore ring system 

itself (z), which is unique to the rifamycins, has received relatively scant attention: 

Kishi et al. have described a ca. 16-step synthesis of 2,3 - which was further elaborated during 
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the final stages of their conquest 
2a 

of 1, and Parker and Petraitis4 have accomplished a 
5 lo 

substantially shorter synthesis of the model compound 4.' - We now report an efficient, regio- 

specific synthesis (Scheme 1) of the intact chromophore which affords 2a in 8 steps and 37% - 

overall yield based on 8a. - 
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Thus* reaction of 8a 
8 

- with Zequivalentsof readily available diene 7 [prepared in 2 steps - 

(89%) from ethyl 2-methylacetoacetate (2) using dianion technology] proceeds regiospecifi- 

tally g710y11 to give the unstable adduct 2 which was directly transformed to 10 (73% from &). - 

Attempts to oxidize the ally1 sidechain of 10 were complicated by participation of the ortho 

hydroxy group [e.g., Pd(OAc)2 oxidation 
12a,i;- 

of 10 gives 14 which could not be fruitfully elab- - - 

orated]; but oxidation12a'c of the corresponding acetate 11 affords 12 in 76% yield. Selenium - 

dioxide oxidation of 12 and hydrolysis provide the chromophore 2a (68%). The structure of 2a - 

was confirmed by direct comparison with naturally derived a; 
lb- 

the corresponding diacetyl 
lb 

derivatives (2b) are also identical. - 
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In an earlier approach to 2 the sequence outlined in Equation 1 was examined. Condensation 

of the dianion of 15 with methyl 2,2_dimethoxypropionate 
14 

- (16) followed by intramolecular trans- 

ketalization gives 17 (61% overall) which was converted to 18 (60%). The assignment of structure - - 

Me 

Me 

18 rather than 20 to the dienone is supported by spectral data' and is strongly buttressed by - - 

dehydrogenation of 18 to 21. -- Unfortunately , & serves admirably for the oxidation of 18 to 11 

and the formation of adduct 19 could not be induced either by varying reaction solvents or by - 

using Lewis acid catalysis or ultrahigh pressure (8 kilobars in acetone). 
15 

Since both El6 

and 23 (below) participate normally in Diels-Alder reactions and since 18 does not react with - - 

maleic anhydride, we attribute the lack of Diels-Alder reactivity of 18 to the electronic effects - 

of the carbonyl group (18 can also be viewed as a vinylogous ester). Numerous attempts (e.g., - 

reduction, ketalization, olefination, etc.) to mask the carbonyl group of 18 failed. - 
In contrast to 18, diene 23 adds to J& virtually instantaneously at room temperature (Eq.2). - 

Oxidation, thermolysis and desilylation afford 25 regiospecifically [although the regiochemistry - 

of 25 was not rigorously established, it is strongly corroborated by the chemical shift (12.26) - 
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of the peri-OlJ resonan??;7'17 

24 o 25 0 (Eq.2) 
- 

3. n-Bu4NF*3H20 - 

consideration of resonance and hydrogen bonding interactions '* in 

8c predicts the regiochemical outcome indicated]. Myriad attempts to append a pyruvoyl group to - 
the C-8 carbon of 25 using both inter- and intramolecular stratagems were invariably unrewarding. - 

*See footnotes 6 and 7 for experimental details and spectral data, respectively. 
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triturate with 100 mL ether -f 3.79 g 17 (2 crops,61% 

(gas evolution) from EtOAc. 17 + 18:OO mg 17 + 36 mL 

TsGH*lH 0, reflux %l h; aq 

18; mp 28-73' (hexane). 18 + 21 
PLC (silica, 20:1 
+ 23: dianion from 3.5 g z 
HMZ; 10 h; cold aq NaHC03/pet. ether workup + 10.4 g 23 (contains some monosilylated 
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20 min add 5.4 g Ag20; aft= 30min filter, aq. tartaric acid/CH2C12 workup + 4.1 g 
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s). 7.46 (lH, 
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